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ABSTRACT 

We show that gravitational backreaction limits the growth of small-scale 

structure on cosmic strings. A “two-scale” scaling solution results, with small- 

scale structure and loop formation scaling as I’nGp times the horizon, where 

rk - 50. There are no more than (IF’kGp)-’ kiis per horizon length of long 

string. Gravitational radiation from the long strings is dominated by emission 

from small scales and is similar. both in frequency and amplitude, to that from 

loops chopped off the network. 

2 



Recently, numerical simulations [l] of cosmic string networks [2] have focused 

on the evolution of scales that are small relative to the correlation length t of the 

long strings. The long string evolution is described quite well by the “one-scale” 

scaling solution [2], with 5 growing as the horizon size 2t. However, in some of the 

simulations [3], neither the size of small loops chopped off the network, nor the 

small-scale structure on the long strings, appears to be scaling with horizon size. 

There is lively debate [4] on the amount, generation, and scale of structure on the 

long strings. The characteristic size of the daughter loops is also uncertain, and 

must be known in order to compute the amount of gravitational radiation emitted 

by the loops (51. This in turn gives i upper bound to the string parameter Gp - 

crucial to the cosmic string galaxy formation scenario [6] -which can be obtained 

from millisecond-p&~ constraints [7] on the gravitational wave background. 

In this Letter, we show that the gravitational backreaction [s] of the radiating 

strings limits the growth of small-scale structure. A “two-scale” scaling solution 

results, with small-scale structure and loop formation scaling as I’cGp times the 

horizon, where l?k - 50 is of order the gravitational power coefficient r of closed 

loops [9]. This sets the number of kinks [IO], which are discontintities in the 

tangent vector of the long strings. With Gp - 10e6, there are approximately lo4 

kinks per horizon length of long string. 

Gravitational radiation is emitted because of the interaction between left- 

moving and right-moving kinks. Consider a long string of proper length L, car- 

rying N left-moving and N right-moving kinks. There are, on average, n2 kink 

collisions per unit proper length per unit time, where n = N/L is the linear kink 

density. We define 1 z n-l as the typical inter-kink distance. During each col- 

lision, the transverse shape of the string changes, with a quadrupole moment of 

order ~1~ changing in a time of order 1. We can use the quadrupole formula [ll] 

to estimate the amount of energy AE emitted in gravitational waves after each 

encounter : AE - (G,u) pl. Dimensional considerations prevent higher multi- 

poles from changing the functional dependence of AE on 1, so we introduce a 

dimensionless constant of proportionality Ck : AE = CkGp f (el,&, ~$)pi, where 
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f(&, 02,o) is a geometrical factor of order unity depending on the opening an- 

gles 01, t’2, and the relative inclination 4 of the kinks. Note that we have put all 

velocity dependence, i.e., relativistic corrections, in ck. The radiative power per 

unit proper length of long string is thus 

d2E 
z-z 

= n2 1 c&‘p2 S n rkGP2 , 

where fis an average of f(&, 62, d) over kink angles on the string, and rk E ckf. 

We find that the gravitational power of a kinky string grows in proportion to the 

number of kinks that it carries, so that it is n times larger than that from a 

smooth string of the same length. 

We have checked that equation (1) is correct by computing the gravitational 

power of a closed loop of unit proper length, carrying n left-moving and n right- 

moving kinks. Using the numerical formalism of Ref. 8 , we find that nrk - 

600, 1500, and 2700, for n = 8, 16, and 32, respectively. These are typical 

values for kinks with an opening angle of 135 degrees. There are uncertainties 

in these estimates, due to variations in kink opening angle and numerical errors. 

Nevertheless, they show that the gravitational power grows with n, and that 

rk - 50-100. This can also be understood heuristically in the following way. 

We associate each left-mover with a right-mover, each pair effectively forming a 

small smooth loop of size I - n -l. The large loop, which is of unit length, is 

“assembled” by n of these small loops. Since the gravitational power of a closed 

loop depends on its shape but is independent of its size [9], the total power of 

the very kinky loop will be proportional to n times the power of each small loop, 

in accord with the above result. This argument suggests that rk is of order the 

gravitational power F of a single smooth closed loop, i.e., rk - I? - 50, as is 

found in Ref. 9 . The factor f is a measure of both the dependence of the power 

of the small loops on their shape and the accuracy of this argument. 

Gravitational radiation will dampen the kinks by increasing their opening 

angle 6’. This is because the relevant time-scale for decay of transverse directions 

4 



is set by the kink oscillations. Longitudinal decay is set by the slower oscillations 

of the average motion of the long string, and this time is n times longer. (The 

long string is also prevented from shrinking due to stretching by the expanding 

universe.) In Ref. 8 , the evolution of a kinky loop is traced, with the gravitational 

backreaction effects included. The kinks are found to decay much faster than the 

large loop as a whole, with a time-scale t N I/(l?bG1.1), where again, rk is of 

order 50. It is easy to see why this is the kink lifetime. The energy per unit 

proper length csrried by n kinks is of order n. Dividing this by the gravitational 

power per unit proper length, which we find to be I’kGp2 n, gives tdecay N 

l/(rcGp n) = l/(l?hGp). The results of Ref. 8 thus support our argument above 

for the gravitational power of a kinky string, with rc N 50. 

Equation (1) has important consequences for the scaling solution. We define 

the scale length L from the long string density as p~,s z p/L2 [l]. Thus, Lm2 

is the proper length of long strings per unit volume, and we must multiply by 

this factor to convert quantities per unit proper length to quantities per unit 

volume. From equation (1) , the long string network loses gravitational energy 

at a rate -rjgrou = I’kGp n pus. Let li+ be the rate of increase of kink density 

due to loop formation, and ti- be the rate of decrease of kink density due to 

decay by gravitational backreaction. Every loop chopped off the long string 

adds 2 kinks and must increase the linear kink density. Thus, the energy loss 

from loop formation is directly related to kink production through -pl,,,,r = 

cz(p/n)ti+/L2 = cx(;l+/n) pus, since the typical loop produced has energy of 

order p/n. From above, the decay time-scale for kinks is rkGp n, and so the 

long strings lose kinks at a rate b-/n = crrcGn n. (Here, cl, c2 and cs are 

dimensionless constants of order unity.) Finally, the time-scale for chopping off 

loops and adding kinks is set by the curvature scale of the long strings, and SO 

ri+/n = Q/L. This must be the case, if the scaling solution is to hold for the 

long strings, and the numerical simulations [I] support this assertion [12],(13]. 

Combining the above relations, the evolution of the kink density is given by : 
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li c3 -=-- 
71 L 

Cd-k@ n (2) 

Here, we have omitted the term that includes kink decay due to stretching [I], 

namely -(&/a)( 1 - 2vz), where u’ is the mean square velocity of the long strings. 

As Albrecht and Turok explain in Ref. 1 , v2 is expected, and found to be, very 

close to 4. Hence the decay of kinks due to stretching is negligible, and we will 

neglect this effect in our discussion. (Recently, the effects of kink stretching on the 

string network have been considered (141; nevertheless, the effects of gravitational 

radiation will be much larger.) 

The kink density R cannot increase indefinitely. Initially, the long string net- 

work governs the growth of 7:. However, the kink decay time decreases as the kink 

density incresses, and at some point becomes comparable to the characteristic 

kink production time from loop formation. ,From equation (2) , this occurs when 

n-l = I - (Cl/C3)rkGp L. Afterwards, kink production is effectively choked, and, 

provided that the scale length L grows no faster than t, I asymptotically grows 

like L. Thus, equation (2) links the small-scale structure to the characteristic 

scale of the long string network. 

If the long string density does reach scaling, so that L is proportional to 

the horizon size, then the typical inter-kink distance I will also scale with the 

horizon. We write L = 2yt, substitute into equation (2) , and solve for the kink 

density as a function of time : nt = Ns(t/ts)‘+g 1 +aiVs[(t/ts)‘+% - 1] 
[ I 

-1 
, 

where NO E noto, (Y E (clrtGp)/( 8 + l), and subscripts refer to initial values. 

Fig. 1 shows the solution for different values of Ns. Initially, n grows as a power 

with time, namely n - nc(t/tc)g. Note that cs/27 < 1, since the time-scale for 

adding kinks on the long string must be greater than the Hubble time t. When 

n - (at)-‘, then scaling takes over, and the inter-kink distance scales with the 

horizon : 1 = at. 

Now, the evolution of the long string density is given by 

PLS -= -2’1(1+ v’) - y - rkGp n , 
PLS a 

(3) 
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where the first term includes the stretching of the long strings in the expanding 

universe [l]. There is a relation between v2 and the chopping probability cs that 

ensures scaling [l], i.e, L cx t; however, for simplicity we shall take v2 = $. The 

scaling criterion then becomes : (rkGP)a-’ = !j -cz$ < +. Hence, LI > 2rkGP. 

Combining with the result in the previous paragraph, we find that : 

I= at = 2(1+ CIC2) 

cl+ 2c2) 
(rk+)t > 2rkGpt (4) 

Here, we have derived an expression for the inter-kink distance that depends 

solely upon factors that describe the adding and decay of kinks on small scales, 

namely cr and cz. This expression is independent of factors like c3 and y that 

describe the long string network. We have thus arrived at a “two-scale” scaling 

solution, with the long string scale length being a sizeable fraction of the horizon, 

and with gravitational backreaction forcing the kink density to scale with the 

horizon size, with small-scale structure of size of order, but no smaller than, 

rkGP times the horizon, where rl; N 50. 

The loops that are chopped off from this network scale in the same fashion 

as the small-scale structure on the long strings. This means that loops are a 

tiny fraction of the horizon size, and thus the loop-seeded scenario of galaxy 

formation is most likely ruled out. The gravitational radiation from the long 

strings is dominated by the contribution from small-scales, from equation (I), 

and it will be very similar, in both frequency and amplitude, to the gravitational 

radiation from the loops. This is because, in the new scenario [3], the total energy 

in long strings and in small loops is about the same. Thus the limits on the string 

parameter Gp from millisecond pulsar measurements are not altered significantly 

when the radiation from long strings is included. 
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FIGURE CAPTIONS 

1) The product nt as a function of the ratio t/lo, as given by equation (2) , 

for different values of NO = n&. Here, ~3127 = 0.5, and ClrkGp = 10V4. 
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